Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep Med ; 3(2): 100531, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1679775

RESUMEN

Antibodies against the influenza virus hemagglutinin stalk afford broad protection against antigenically drifted viruses. In this issue of Cell Reports Medicine, Yegorov et al.1 identify that current vaccine formulations induce neutralizing stalk antibodies in children-a highly vulnerable population.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes , Niño , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Estaciones del Año , Vacunas Atenuadas
2.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1612184

RESUMEN

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Chlorocebus aethiops , Citomegalovirus/inmunología , Perros , Femenino , Células HEK293 , Humanos , Inmunidad Celular , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Células Vero
3.
PLoS Comput Biol ; 17(12): e1009664, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1571973

RESUMEN

The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.


Asunto(s)
Evolución Molecular , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Antígenos Virales/química , Antígenos Virales/genética , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Biología Computacional , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Evasión Inmune/genética , Gripe Humana/inmunología , Gripe Humana/virología , Modelos Inmunológicos , Simulación de Dinámica Molecular , Mutación , Pandemias , Glicoproteína de la Espiga del Coronavirus/química , Proteínas del Envoltorio Viral/química
4.
mBio ; 12(4): e0159821, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1360544

RESUMEN

The gut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here, we found that disruption of nasal bacteria by intranasal application of antibiotics before influenza virus infection enhanced the virus-specific antibody response in a MyD88-dependent manner. Similarly, disruption of nasal bacteria by lysozyme enhanced antibody responses to intranasally administered influenza virus hemagglutinin (HA) vaccine in a MyD88-dependent manner, suggesting that intranasal application of antibiotics or lysozyme could release bacterial pathogen-associated molecular patterns (PAMPs) from disrupted nasal bacteria that act as mucosal adjuvants by activating the MyD88 signaling pathway. Since commensal bacteria in the nasal mucosal surface were significantly lower than those in the oral cavity, intranasal administration of HA vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to an intranasally administered HA vaccine. Finally, we demonstrated that oral bacteria combined with an intranasal vaccine protect from influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our results reveal the role of nasal bacteria in the induction of the virus-specific adaptive immunity and provide clues for developing better intranasal vaccines. IMPORTANCE Intranasal vaccination induces the nasal IgA antibody which is protective against respiratory viruses, such as influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, understanding how mucosal immune responses are elicited following viral infection is important for developing better vaccines. Here, we focused on the role of nasal commensal bacteria in the induction of immune responses following influenza virus infection. To deplete nasal bacteria, we intranasally administered antibiotics to mice before influenza virus infection and found that antibiotic-induced disruption of nasal bacteria could release bacterial components which stimulate the virus-specific antibody responses. Since commensal bacteria in nasal mucosa were significantly lower than those in the oral cavity, intranasal administration of split virus vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to the intranasally administered vaccine. Therefore, both integrity and amounts of nasal bacteria may be critical for an effective intranasal vaccine.


Asunto(s)
Bacterias/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la Influenza/inmunología , Mucosa Nasal/microbiología , Infecciones por Orthomyxoviridae/prevención & control , Inmunidad Adaptativa/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Mucosa/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/metabolismo , Mucosa Nasal/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Células Vero
5.
PLoS Pathog ; 17(3): e1009407, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1338134

RESUMEN

Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , VIH-1/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Anticuerpos ampliamente neutralizantes , Reacciones Cruzadas , Infecciones por VIH/inmunología , Humanos , Gripe Humana/inmunología
6.
Int Immunopharmacol ; 99: 108020, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1330896

RESUMEN

The spike protein of the SARS-CoV-2 virus is the foremost target for the designing of vaccines and therapeutic antibodies and also acts as a crucial antigen in the assessment of COVID-19 immune responses. The enveloped viruses; such as SARS-CoV-2, Human Immunodeficiency Virus-1 (HIV-1) and influenza, often hijack host-cell glycosylation pathways and influence pathobiology and immune selection. These glycan motifs can lead to either immune evasion or viral neutralization by the production of cross-reactive antibodies that can lead to antibody-dependent enhancement (ADE) of infection. Potential cross-protection from influenza vaccine has also been reported in COVID-19 infected individuals in several epidemiological studies recently; however, the scientific basis for these observations remains elusive. Herein, we show that the anti-SARS-CoV2 antibodies cross-reacts with the Hemagglutinin (HA) protein. This phenomenon is common to both the sera from convalescent SARS-CoV-2 donors and spike immunized mice, although these antibodies were unable to cross-neutralize, suggesting the presence of a non-neutralizing antibody response. Epitope mapping suggests that the cross-reactive antibodies are targeted towards glycan epitopes of the SARS-CoV-2 spike and HA. Overall, our findings address the cross-reactive responses, although non-neutralizing, elicited against RNA viruses and warrant further studies to investigate whether such non-neutralizing antibody responses can contribute to effector functions such as antibody-dependent cellular cytotoxicity (ADCC) or ADE.


Asunto(s)
COVID-19/inmunología , Reacciones Cruzadas/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes , Reacciones Antígeno-Anticuerpo , Sitios de Unión de Anticuerpos/inmunología , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Perros , Mapeo Epitopo , Epítopos/inmunología , Glicosilación , Humanos , Vacunas contra la Influenza/inmunología , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , Células Vero
7.
Nanomedicine ; 37: 102438, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1306447

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , ARN/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Aves/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/uso terapéutico , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/química , Vacunas contra la Influenza/uso terapéutico , Gripe Aviar/prevención & control , Gripe Aviar/virología , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Pandemias , ARN/genética , ARN/uso terapéutico
8.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1282632

RESUMEN

Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.


Asunto(s)
Antígenos Virales/inmunología , Interacciones Huésped-Patógeno/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos Virales/química , Protección Cruzada/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Modelos Moleculares , Relación Estructura-Actividad
9.
Biochem Biophys Res Commun ; 565: 8-13, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1252489

RESUMEN

Amidst infectious disease outbreaks, a practical tool that can quantitatively monitor individuals' antibodies to pathogens is vital for disease control. The currently used serological lateral flow immunoassays (LFIAs) can only detect the presence of antibodies for a single antigen. Here, we fabricated a multiplexed circular flow immunoassay (CFIA) test strip with YOLO v4-based object recognition that can quickly quantify and differentiate antibodies that bind membrane glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or hemagglutinin of influenza A (H1N1) virus in the sera of immunized mice in one assay using one sample. Spot intensities were found to be indicative of antibody titers to membrane glycoprotein of SARS-CoV-2 and were, thus, quantified relative to spots from immunoglobulin G (IgG) reaction in a CFIA to account for image heterogeneity. Quantitative intensities can be displayed in real time alongside an image of CFIA that was captured by a built-in camera. We demonstrate for the first time that CFIA is a specific, multi-target, and quantitative tool that holds potential for digital and simultaneous monitoring of antibodies recognizing various pathogens including SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Proteínas M de Coronavirus/inmunología , Inmunoensayo/métodos , SARS-CoV-2/inmunología , Animales , COVID-19/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , SARS-CoV-2/aislamiento & purificación
10.
Viruses ; 13(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1231504

RESUMEN

Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.


Asunto(s)
Adyuvantes Inmunológicos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Ensayos Clínicos como Asunto , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Inmunidad Humoral , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Vacunas de Partículas Similares a Virus/inmunología
11.
Sci Transl Med ; 13(583)2021 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1117652

RESUMEN

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Primates/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/química , Complejo Antígeno-Anticuerpo/química , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/química , COVID-19 , Ferritinas/química , Ferritinas/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/inmunología , Gripe Humana/virología , Macaca fascicularis , Modelos Moleculares , Nanopartículas/química , Pandemias , Primates/virología , Estructura Cuaternaria de Proteína , SARS-CoV-2 , Investigación Biomédica Traslacional
12.
Acta Virol ; 64(4): 417-426, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-914659

RESUMEN

Aquatic birds are the main reservoir of influenza A viruses (IAVs). These viruses can infect humans repeatedly and cause acute respiratory disease with potential of spread in the form of epidemics. In addition, avian influenza viruses that overcome the interspecies barrier and adapt to humans can cause a world-wide pandemic with severe consequences to human health. Therefore, scientists are focused on the development of a "universal" vaccine with a broad protective efficacy, i.e. against different subtypes of influenza A viruses and not only against the currently co-circulating human epidemic strains. Nowadays, several new vaccine design strategies have been described. Most of them utilize the conserved stem part of influenza surface glycoprotein hemagglutinin (HA) or the ectodomain of M2 (M2e) protein with proton-channel activity. A comparison of the efficacy of novel vaccines and their protective mechanisms against influenza infection is discussed in this review and should be considered for the construction of the most effective broadly protective vaccine with minimal side effects. This is the essential goal in influenza virus research today, especially when the infection with new human coronavirus SARS-CoV-2 can interfere with the course of influenza virus infection. Keywords: influenza A virus; HA2 gp; M2 ectodomain; universal vaccine.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Gripe Humana , Proteínas de la Matriz Viral/inmunología , Animales , COVID-19 , Humanos , Virus de la Influenza A/genética , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA